

Direct-Push Crosshole (DPCH) Testing for High-Resolution Vp and Vs Subsurface Profiling

Brady R. Cox¹

Kenneth H. Stokoe¹, Liam Wotherspoon², Andrew Stolte¹,

¹Department of Civil, Architectural and Environmental Engineering, <u>The University of Texas</u>, Austin, USA ²Department of Civil and Environmental Engineering, <u>The University of Auckland</u>, New Zealand

NHERI@Utexas In-Situ Liquefaction Workshop Portland, Oregon; 23 June 2016

Direct-Push Crosshole Overview

- Push two seismic cones ~ 0.75 2.0 m apart
- Propagate compression (P) and shear (S) waves between the cones
- Measurements at 20 50 cm depth intervals
- High-resolution measurements of Vp and Vs down to at least 20 m depth
- Vp measurements used to find depth to 100% saturation (Vp > 1500 m/s)
- Can test native soil and improved ground

Direct-push Crosshole Equipment

Full-sized track-mounted CPT rig and portable CPT actuator

Standard Seismic CPT Cone

Pagani track-mounted CPT rigs

Custom Built Cones: 3 x orthogonal geophones 1 x triaxial MEMS accelerometer

Direct-push Crosshole (DPCH) Setup

DPCH for Ground Improvement

DPCH for Ground Improvement cont...

Source rod (S) Receiver rod (R)

DPCH for Ground Improvement cont...

Source rod (S) Receiver rod (R) Impact <u>1.5 – 2.0 m</u> 20 cm increments Stone column/RAP

DPCH for Vp and Vs

DPCH Trigger Calibration

$$t_{C} = t_{Raw} + t_{T}$$

$$V = Dist. / t_{C}$$

DPCH Distance Calculation

DPCH at Port of Longview

Utilizing direct-push crosshole testing to assess the effectiveness of shallow ground improvements

DPCH Waveforms: OSU-5

Time (ms) 10 15 20 0 5 0 0.5 1 1.5 2 Depth (m) 3.5 4.5 5

XH P-Wave - Receiver Cone

XH S-Wave - Receiver Cone

DPCH Results: OSU-5

Questions?