

Pseudo 2D Imaging of the Mel-Price Wood River Levee via MASW and Resistivity

Clinton M. Wood, PhD Michelle L. Bernhardt, PhD Tim Moody Behdad Mofarraj

Non-Intrusive 3D Levee Imaging Workshop

St. Louis, MO; 11 November, 2016

MACK-BLACKWELL TRANSPORTATION CENTER

Maritime Transportation Research & Education Center

Presentation Outline

- 1) Motivation for Work
- 2) Data available at Mel-Price Wood River Levee
- 3) Data Collection and results at the Mel-Price Wood River Levee
 - 1) Ohmmapper resistivity
 - 2) Multi-channel Analysis of Surface Waves (MASW)
- 4) Pitfalls associated with inversion problems
- 5) Final Thoughts

Levees in the US

ASCE Report Card (2013)

D
B-

TRANSPORTATION
Aviation
Bridges
Inland Waterways
Ports
Rail
Roads
Transit

PUBLIC FACILITIES

Public Parks & Recreation	
Schools	
ENERGY	
Energy	
Previous Report Cards	

Levees in the US

Note: A national levee inventory project is underway. Information shown on this map is current as of August 2009 but may change in the future.

The Problem\$

- 1) Limited funding to assess the estimated 100,000 miles of levees
 - Currently only about 15% of the nation's levees are in the National Levee Database
 - Over 22% of those levees are rated as unacceptable
 - Only about 37% are documented in FEMA's Midterm Levee Inventory
- 2) Limited funding for necessary or cautionary repairs
 - ASCE estimates over \$100 billion is needed to repair and rehabilitate the US levee system
 - Only \$415 million is allocated for the entire flood control program annually

The Approach

Develop and refine a rapid and non-destructive assessment procedure which can cost effectively address both problems

- 1) Geophysical field testing
- 2) Statistical analysis of data to determine most effective methods
- 3) Probabilistic framework to assess performance

ARKANSAS Mel-Price Wood River Levee Section

Geotechnical Information Mel-Price Wood River Levee

Mel-Price Wood River Levee Data Collection

A combination of geophysical methods were used with the goal of determining both soil type and stiffness of the levee material

- A. Resistivity testing via a Geometrics Ohmmapper Capacitively Coupled Resistivity Instrument
- B. Surface wave testing (MASW) via landstreamer, 4.5 Hz geophones, and sledgehammer source

Mel-Price Wood River Levee Data Collection Resistivity

Testing Parameters

- 1) Ohmmapper TR5 system with five receivers was used.
- 2) Dipole length of 5 meters with a rope length of 2.5 meters
- 3) Dipole length of 10 meters with rope lengths of 5, 20, and 40 meters

Resistivity Testing on Mel-Price Wood River Levee

Resistivity Processing

Resistivity Processing for Mel-Price Wood River Levee

Resistivity Processing

UNIVERSITY OF ARKANSAS

Resistivity Processing

Much more processing to come

Mel-Price Wood River Levee Data Collection Surface Wave Testing (MASW)

Testing Parameters

1) Geostuff landstreamer with 24, 4.5 Hz vertical geophones setout with a 2 m spacing between geophones (total array length of 46 m).

2) Measurement spacing between 25-50 meters depending on line

3) Sledgehammer source with source locations of 5, 10, 20 meters from the first geophone and 3-5 shots per location

Surface wave Testing on Mel-Price Wood River Levee

ARKANSAS | Surface Wave Testing (MASW)

Dispersion Processing

Frequency Domain Beamformer Method

Combined with multiple source offsets

Pseudo 2D Imaging of the Mel-Price Wood River Levee via MASW and Resistivity

Pseudo 2D Imaging of the Mel-Price Wood River Levee via MASW and Resistivity

Unfortunately the surface wave results are still under construction for the Mel-Price Wood River Levee

Potential Pitfalls and Limitations in Inversion Process

Dispersion Curve

Shear wave velocity Profile

Apparent Resistivity

Inversion Process

- a) Assume a system of linear elastic layers over a half-space (H, ρ , Vs & Vp)
- b) Calculate theoretical dispersion curve (DC) for system (forward problem)
- c) Compare theoretical DC to experimental DC acquired in field (misfit function)
- d) Revise layers (i.e., thickness, Vs, etc.) until satisfactory fit is achieved (backward problem)

Inversion Challenges

Nonlinear

 Relationship between the data space (Vr vs. freq or wavelength) and the model space (Vs vs. depth) is nonlinear

III-Posed

– Attempting to recover 4 model parameters (H, ρ , Vs & Vp) indirectly from two data parameters (Vr, freq)

• Mixed-Determined

The model solution for deeper layers is dependent on the model solution for shallower layers

• Result...Non-unique Solution!

- Many models can fit the experimental data "equally well"
- The <u>choice of layering parameterization has a **HUGE** impact on the ability to recover the "true" layered model
 </u>

How do many 2D and Pseudo 2D methods solve the inversion problem?

The use of lots of unconstrained layering in the inversion models can lead to

- 1) Unrealistic layering that does not make sense geologically and geotechnically
- 2) Smearing of layer properties at interfaces making it difficult to recover true properties

Example of recovering unrealistic geotechnical properties

No evidence of inversion/LVL in dispersion data

Figure 2.2.3-3: Field data example of a dispersion curve with identification of the fundamental mode (red dots) (left) and resulting shear wave velocity profile (right).

Example of smearing layer properties

Model 19 llayens

Depth

From Teague and Cox 2016

Final Thoughts

- Pseudo 2D methods such as Resistivity and MASW can be powerful tools to rapidly evaluation geotechnical infrastructure. However, care must be taken from the data collection to the data process to insure valuable results are obtained and not just fancy color contour plots.
- 2. Pseudo 2D methods still have ways to go in the inversion process to be able quickly determine realistic layering and material parameters.

Acknowledgements

- USDOT and MarTREC
 - This material is based upon work supported by the U.S. Department of Transportation under Grant Award Number DTRT13-G-UTC50. The work was conducted through the Maritime Transportation Research and Education Center at the University of Arkansas. This work reflects the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation's University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

Maritime Transportation Research & Education Center

