Civil & Construction Engineering

Geologic Setting and Subsurface Conditions at the Demonstration Site

23 June 2016 Armin W. Stuedlein, PhD, P.E. Associate Professor

Acknowledgements

 Soil sampling and CPT donated by Oregon Geotechnical Explorations, Inc.

Oregon Geotechnical EXPLORATIONS ING.

 Coordination and access to Barlow Point courtesy of the Port of Longview

Presentation Outline

- Demonstration site
- Overview of the regional geology
- Regional Seismicity
- General considerations for liquefaction analyses
- Site-specific information
 - USGS Deaggregation for Longview
 - Site and Exploration Plan, cross-section
 - Mobile shaker site characterization

Demonstration Site

[A (very) Brief Geologic Overview]

Overview of the Regional Geology

- West coast circa 215 million years ago
- Hawaii-like island chains conveyed to what is now eastern California, mid-Nevada, and Idaho

Civil & Construction Engineering

Overview of the Regional Geology

- West coast circa 130 million years ago
- Features include islands, lagoons, peninsulas
- Tens of millions of years before we acquire our current landmass

Overview of the Regional Geology

- Current landform
- Reflects complex accretionary history
- Upward movement
- Produced crustal shear with NW trending faults
- 70% of Oregonians (~3 million) live in the Willamette Valley

Oregon

Overview of Regional Geology

Olympics

Columbia River

- Surficial soils of the Willamette Valley characterized by the Missoula flood deposits Ocean
- Catastrophic floods occurring regularly to 17,000 ybp
- Known as Willamette Silt, this material is highly heterogenous, non-plastic to highly plastic

Overview of Regional Geology

- Test site tomorrow not in Willamette Silt deposits; Columbia river alluvium with contributions from the Willamette and Cowlitz Rivers
- Deep deposits of soft, compressible, nonplastic to plastic silt and sand mantling the Columbia Basalt flows

[Regional Seismicity]

Seismic Hazards

Crustal faults

- Seattle, Tacoma, Portland Hills
- 1962 Vancouver, WA (M5.2)
- 1993 Scotts Mills, OR (M5.6)
- Deep intraslab faults (WA)
 - 1949 Olympia EQ (M6.8)
 - 1965 Renton EQ (M6.5)
 - 2001 Nisqually EQ (M6.8)
- Cascadia Subduction Zone
 - Partial rupture: SW Oregon, ~400 km, with M8 to M8.5
 - Full rupture: SW Oregon to Vancouver, BC, ~1,000 km, with M9 to M9.5

Seismic Hazards

Cascadia Subduction Zone

- ~10,000yr turbidite record (Goldfinger et al 2014)
- ~ 4 clusters of activity
- Clusters separated by ~1,000 yrs
- Within a cluster, EQ's 0\$00 10000 - 9500 occur ~300 to 500yrs
- Last EQ was January 26, 1700. M9907-12PC

UNIVERSITY

Seismic Hazard

• 2014 USGS Maps for 2% in 50yrs

[Considerations for Liquefaction Hazards]

General Considerations in the Region

- Susceptibility of transitional soils:
 - What fines content (FC) matters?
 - What plasticity index (PI)?
 - What is the interaction between FC and PI?
 - How does fabric play a role?
 - Role of stress history?
- Static and cyclic strength of transitional soils
- Post-cyclic volumetric strain of transitional soils

General Considerations in the Region

Transition

Region

40

20

Susceptibility

Plasticity Index

Plasticity Index

40

30

20

10

50

40

30

20

10

0

0.4

(b)

(a)

- Chinese criteria not valid
- Bray & Sancio (2006)

Δ_

Not Susceptible

Not Susceptible

0.6

- Boulanger & Idriss (2006)
- Armstrong & Malvick (2015)

ο Sι

D M(

∧ Nc

This Study

ወ

sticit

Pla

M

Ъ.

 w_c/LL

0.8

10

0

0

30

UNIVERSIT

General Considerations in the Region

- Some pertinent data on cyclic strength and post-cyclic consequences (after Beaty et al. 2014)
- Focus on transmission line support towers

a) Near Portland OR and Vancouver WA

b) Near Longview WA

Figure 1. Vicinity maps of transmission tower crossings.

General Considerations in the Region

b) Cyclic strength curve.

Figure 3. Static and cyclic shearing resistance of silt-rich soils.

General Considerations in the Region

a) Relationship between cyclic strength loss and R_u .

b) Relationship between post-cyclic 1D strain and R_u .

Figure 4. Post-cyclic deviatoric and volumetric behavior of silt-rich soils.

[Barlow Point, Port of Longview]

Seismic Hazard at Barlow Point, Longview, WA

- 2008 USGS Deaggregation for Longview, WA (PGA; 2% in 50yrs) PSH Deaggregation on NEHRP BC rock
- Deep soft soil site with basin effects
- Amplification will be high

Barlow Point, Port of Longview

Site and Exploration Plan

Site and Exploration Plan

UTEYUN SLALE

Mobile Shaker Site

Civil & Construction Engineering

[and now, back to Brady and Ken]

