

Biogeotechnical Mitigation of Earthquake-Induced Soil Liquefaction

Ed Kavazanjian and Leon van Paassen Center for Bio-mediated and Bio-inspired Geotechnics (CBBG)

By

Arizona State University

NHERI Workshop Portland, Oregon 11 September 2019

Biogeotechnical Engineering

An emerging sub-discipline in geotechnical engineering that includes:

- <u>Bio-mediated Processes:</u> managed and controlled through biological activity (living organisms)
- <u>Bio-inspired Processes</u>: biological principles employed to develop new, abiotic solutions (no living organisms)
 - Includes Nature-inspired abiotic processes

Center for Bio-mediated and Bio-Inspired Geotechnics (CBBG)

Four leading academic institutions

ASU, Georgia Tech, New Mexico State, UC Davis

Seed funding provided by NSF

- Gen-3 ERC
- Research and education
- \$18.5 million for 5 years

Industry Partnership program

23 Consultants, Contractors, Owners, Agencies

CBBG Vision

Learn from nature

- Nature has had 3.8 billion years of trial and error (evolution) to get it right
- Develop nature-compatible solutions for resilient, sustainable infrastructure development
 - Solutions of first resort
 - Minimize "carbon footprint" (e.g., greenhouse gas generation) and use of non-renewable resources
 - Mitigate natural and man-made geotechnical hazards

Bio-Geo-Chemo-Mechanical Natural Processes

Mineral precipitation Chemical transformation Biopolymer generation Motile (self propelled) organisms Root support/reinforcement systems

Biogeotechnical challenge: Mobilize these processes for beneficial use

CBBG Technologies (Thrusts)

Hazard Mitigation

- Earthquake-Induced Liquefaction
 Environmental Protection
 - Surface and Ground Water Remediation

Infrastructure Construction

- Fugitive Dust Control
- Foundations and Ground Anchors

Subsurface Exploration

More Efficient and Self-Boring Probes

Example: Calcium Carbonate (CaCO₃) Precipitation

One of the most common minerals in nature

Most studied process in biogeotechnical engineering

Increases strength, stiffness, dilatancy

Many CaCO₃ precipitation mechanisms

- Some anthropogenic
- Some generate biogas (→ desaturation)

http://top10for.com/top-10-most-iconic-british-landmarks/

Carbonate Precipitation on an Engineering Time Scale (often non-desired)

- Mollusk shells
- Mineral scale on pipes
- Fouling of well screens
- Clogging of water treatment plant filters

www.mendonomasightings.com/

Clogging of drainage systems in dams, landfills, and tailings piles

Carbonate Precipitation on a Geologic Time Scale

Cemented sand Carbonate sediments Gypsum nodules Stalactites, stalagmites

https://upload.wikimedia.org/wikipedia/commons/ 5/59/Cliff_House_from_Ocean_Beach.jpg

The Biogeotechnical Challenge

Accelerate beneficial processes to occur in a time frame of interest

and/or

Induce adverse processes in a context where the effect is beneficial

JennBredemeier.deviantart.com

Georgia Institute

Carbonate Precipitation Mechanisms and Polymorphs Mechanisms

Process	End Products	Undesirable Side-Effect
Ureolysis (Microbial and Free Enzyme)	NH ₃ (ammonia) NH ₄ ⁺ (ammonium)	Toxic gas Toxic salts, acidification
Sulfate Reduction	H ₂ S (hydrogen sulfide)	Toxic gas
Fermentation of Fatty Acids	CH ₄ (methane)	Explosive gas
Denitrification	N ₂ (nitrogen)	None

Note: microbial methods may be via augmentation or stimulation

Polymorphs

- Calcite (preferred)
 Vaterite and Aragonite
 Amorphous (least stable)

Potential Applications

Justanothercinemanic.tumbl.com

Liquefaction mitigation **Bearing capacity Tunneling and excavations** Slope stabilization Fugitive dust / erosion control

"Bio-bricks"

Mitigation of Liquefaction

Densification: Vibration, cavity expansion

Disruptive to existing facilities

Reinforcement: Soil mixing, stone columns

Not beneath existing facilities, disruptive

Grouting: Penetration, compaction grouting

Limited applicability, expensive

No cost effective mitigation for existing facilities

Biogeotechnical Liquefaction Mitigation

Three different biogeotechnologies

- Microbially Induced Carbonate Precipitation (MICP) via ureolysis
- Enzyme Induced Carbonate Precipitation (EICP) via ureolysis
- Microbially Induced Carbonate Desaturation and Precipitation (MIDP) via denitrification

Photos courtesy of www.geerassociation.org

Hydrolysis of Urea (Ureolysis)

Most studied CaCO₃ precipitation mechanism

- Western Australia, Delft, Cambridge, UC Davis
- Precipitation increases peak strength, dilatancy

Advantage

Rapid improvement

Limitations

- May be limited to fine sand or coarser soil
- Ammonium chloride by-product

MICP and EICP

MICP via ureolysis (Bio-mediated)Microbes produce urease enzyme

EICP via ureolysis (Bio-inspired)
Urease derived from agricultural sources (Jack Bean)

Sporosarcina pasteurii

Jack Bean

Liquefaction Mitigation via MICP

Centrifuge Testing at UC Davis on lightly-cemented ($\approx 1.2\% CaCO_3$) Ottawa F-65 sand ($D_R = 40\%$) Eighteen (18) "Events" of 15 cycles of uniform loading

Centrifuge model and CPT rack.

Georgialnstitute

EICP Columns

Installed using *tube-a-manchette* After 3 injections: • UCS > 500 kPa • CaCO₃ content < 3% Field scale tests in progress Costs currently \approx \$60/m³

Exposed EICP Bio-cemented Soil Column

MIDP via Denitrification

Relies on dissimilatory reduction of nitrate (denitrification)

- Need nutrients, calcium source
- Uses (ubiquitous) indigenous microbes

Two Stage Process

- Stage 1: Microbial desaturation
- Stage 2: Carbonate precipitation

Stage 1: Desaturation: Abiotic Testing (Ottawa 20-30 Sand)

Increase in stiffness, dilatancy, strength of treated columns (even after failure)

MIDP: Key Findings

Abiotic Experiments:

• Small amount of desaturation leads to significant increase in liquefaction resistance

Biotic Experiments:

O'Donnell (2015)

• Small amount of calcite precipitation leads to significant increases in dilatancy, stiffness, strength, cyclic resistance

Conclusion: Denitrification shows promise for mitigation of liquefaction potential as <u>a two-stage process</u>

Issues to Consider (all Biogeotechnologies)

- Cost
- QA/QC
- Durability
- Environmental impacts
- Unanticipated side effects
- Implementation at field scale

How to realize a field demonstration?

- 1. Find a project site / owner / contractor
- 2. Define the treatment recipe
- 3. Inject substrates in the ground
- 4. Monitor biochemical conversion.
- 5. Remove the remaining by-products (if necessary).

Project site: Toronto, Ontario Summer 2018

- Redevelopment project.
- Hydrocarbon contaminated soils
- Running' sands
- Bioengineered banks
- Enable stable excavation of a steep underwater slope (1:2)

Field trial in Toronto, Ontario summer 2018

Port Lands Area – Soil & Groundwater Remediation and Treatment Technologies – Part B: Field-Scale Pilot Testing:

Ethical Solutions - surfactant enhanced injection combined with chemical oxidation technology (\$278,100)

Geosyntec Consultants – demonstration of selfsustaining smouldering remediation in both in-situ and ex-situ environments technology (\$869,110) Groundwater Technology BV - in-situ biological cementation using urea-based solution to enhance geotechnical stability of soils technology (\$313,022)

Arizona State University

NSF

GeorgiaInstitute

Define the recipe: set the target

Slope stability assessment: Factor of Safety 1

- Drained: Mohr-Coulomb model: cohesion = 5 kPa, Phi = 20 degrees
- Undrained: cohesion >16 kPa required

Cementation:

1 to 3 % of CaCO₃ by dry weight

GeorgiaInstitute

Define the recipe: select the process

Inject the substrates

- What is the well configuration?
- What is the well distance?
- What flow rate?
- What concentration?

4 injection wells + 1 extraction well Closed water balance

Time=0 s Streamline: Darcy's velocity field Arrow Line: Darcy's velocity field Surface: Hydraulic head (m)

Georgia Institute of Technology

1

Simulation Results

Find the right balance between:

Reaction rate > Flow rate

- concentrations,
- reaction rate (reaction time)
- flow rate (hydraulic residence time)

Reaction rate < Flow rate

Site characterization : Cone penetration test results

Field implementation

Final well plan: 3 plots

NM STATE

Field implementation

Final well plan

Monitoring

- Flow rates
- Groundwater monitoring and sampling
- SCPTU
- Seismic analysis
- Trenching
- Sampling

Monitoring

Flow rate CTD Divers in extraction and monitoring wells:

- Precipitation on the diver!
- Electrical conductivity indicated conversion!

Simulation of the monitoring results

- Lower flow rate than anticipated
- Fast 'breakthrough'

qt (bar)

50

100

Preferential flow

Seismic cone penetration tests

- Cone resistance
- S-wave velocity

No measurable strength increase!

Seismic post analysis

RAPID grant

- NHERI@UTexas: the large "T-Rex" hydraulic shaker and the mobile instrumentation laboratory
 - Liquefaction resistance
 - Crosshole shear wave velocity measurements

Seismic analysis – P-wave velocities

Reduced P-wave velocity MIDP location!

Trench excavation and sampling

Preliminary Conclusions – Lessons learned in Toronto

- Demonstrated evidence: MICP and MIDP can be implemented at field scale.
- Evaluated injection, mixing, monitoring and sampling methods are available.
- Limited evidence on the obtained strength
- Reactive Transport models are available and useful (although limited predictability)

A happy client!

Preliminary Conclusions – Lessons learned in Toronto

But what about

- Costs?
- QA/QC?
- Environmental impact?
- Search for applications, projects, potential clients, contractors and stakeholders

Biogenic gas formation to mitigate liquefaction?

O'Donnell et al 2016, Pham et al 2016

A small amount of gas can mitigate liquefaction

NM

Benefits of Microbially Induced Desaturation (MID)

- Significantly cheaper than other biogeo options
 - 30 x less substrate than MICP
- Faster than MIDP (only 1 flush)
- Relatively benign side effects

But

- Unsaturated permeability may be an issue
- Heave, gas venting may be issues
- Applicable for fine grained soils?
- Does desaturation persist?

First full scale trial on Microbial Induced Desaturation (MID) for liquefaction mitigation in the world!!

Acknowledgments

- Sean O'Donnell
- Caitlyn Hall, ASU
- Elizabeth Stallings, ASU
- Liya Wang, ASU
- Nariman Mahabadi, ASU
- Daeyhun Kim, ASU
- Chen Zeng, ASU
- Juan Paez, ASU
- Ed Kavazanjian, ASU

- Yvo Veenis, Groundwater Technology
- Robert Heling, Groundwater Technology
- Wouter van der Star, Deltares
- Khalid Al-Hourani, Accuworx
- Kim Hobbs, Accuworx
- Meggen James, Waterfront Toronto
- Marsela Wijaya, Waterfront Toronto
- Team UT Austin

This material is based upon work supported in part by the National Science Foundation (NSF) under NSF CA No. EEC-1449501. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the NSF.

