Mel Price-Wood River Problem Seepage Area Background Wood River D&LD - Upper

Presented by: Ryan Goetz, P.E. (USACE) Date: 11 November 16

US Army Corps of Engineers BUILDING STRONG_®

Outline

- Background
- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Outline

Background

- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Project Regional Map

Vicinity/Segment Map

Inundation Map

Typical Sections Mainline Levee Embankment

FOR OFFICIAL USE ONLY Geomorphology / Foundation Geology interpreted from CEMVS Exploration

Prior to Levee Construction – Proposed Alignment in Red

Many features alongside the river still controlled more by natural forces and less by manmade changes.

Present Day

Outline

Background

- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Simplified Explanation of Underseepage

Simplified Explanation of Underseepage

Piezometric Pressure Due to Seepage LEVEE de. RIVER CLAYS TOPSTRATUM SANDS PERVIOUS MATERIAL IMPERVIOUS SEEPAGE THROUGH LEVEE AND FOUNDATION

14

Floodwater

15

Sand Boil

Underseepage

Outline

- Background
- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Performance History Mel Price Seepage Area
Relocation of old Lock & Dam 26 two miles downstream to Mel Price Locks & Dam caused a permanent pool to be placed on the Upper Wood River Levee from Sta 0+00 to Sta 115+24.

<u>April 1988</u>

August 2012

FOR OFFICIAL USE ONLY

Mel Price Seepage Area

FOR OFFICIAL USE ONLY

Problem Discovery – 2009

- Data Gathering to refine LIDAR information
- Discovered clear flowing seepage

BUILDING STRONG_®

Problem Discovery

Problem Discovery – November 2009 Uncontrolled Seepage and Sand Boils

Ongoing Uncontrolled Seepage and Sand Boils. Caused by constant differential head created by normal pool at Melvin Price Locks and Dam.

BUILDING STRONG®

FOR OFFICIAL USE ONLY

EMBANKMENT SEEPAGE SUPPORTING PHOTOS

Uncontrolled Underseepage Creating a Sand Boil Sheet flows of Underseepage Collecting and causing Head Cutting Erosion

BUILDING STRONG®

FOR OFFICIAL USE ONLY

28

Outline

- Background
- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Soil Probes – Identify Blanket Thickness

Borrow Locations with Seepage Location Overlaid

Tan Areas: Fine Grain BorrowYellow Areas: Coarse GrainedDredged Borrow

50+00

Skir ney Island

 100 ± 00

10+00

120+00

Google earth

1941 Aerial with Seepage Location Overlaid

Google earth

Skillney Island

@ 2018 Google

Originally Installed Wooden-Stave Relief Wells

Mel Price Seepage Area

FOR OFFICIAL USE ONLY

Original Piezometer Layout

Outline

- Background
- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Proposed Seepage Cut-Off Wall

Boulders/Cobbles Encountered during Construction of Mel Price L&D

2014 Pump Test

FOR OFFICIAL USE ONLY

Outline

- Background
- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
 Current Path Forward

Risk Definitions

- Risk = P(load) x P(failure)_{given the load} x Consequences_{given failure}
- Risk Analysis A quantitative calculation or qualitative evaluation of risk
- Risk Assessment The process of deciding whether risk reduction actions are needed

Failure Event Tree – Internal Erosion Due to Underseepage

Failure Event Tree – Nodes 1, 2, and 3 informed by piezometric data interpretation

BUILDING STRONG_®

Coefficient of Uniformity, Cu

GRAW SIZE IN MILLUMETERS

SPAN SIZE IN MILLIMETERS

Detailed Riverside Stratigraphy: Station 95+18

PFM 1 Node 3 - BEP Initiates

Modeling results against critical

Risk Matrix

Outline

- Background
- Description of Underseepage
- Problem Discovery
- Problem Analysis
- Develop an Interim Solution
- Develop a Permanent Solution
- Revise the Permanent Solution using a "Risk Informed" Decision Making Process
- Current Path Forward

Proposed Plan Install 100 New Relief Wells

- Relief Wells Prevent Progression
 - Provides a Filtered Exit to Prevent Erosion of Foundation Sands

Proposed Plan Install 100 New Relief Wells

ogle earth

.....

- Lowered Relief Well Outlet Elevation
 - ~7 feet lower

ogle eart

Questions?

BUILDING STRONG_®