Portland State

Field Trials with NHERI@UTexas T-Rex to Evaluate Microbially Induced Desaturation for Silt Liquefaction Mitigation

Diane Moug (dmoug@pdx.edu) Assistant Professor Department of Civil and Environmental Engineering Portland State University

Field Trials of MID for Liquefaction Mitigation

Field trials of microbially induced desaturation (MID) performed July to September 2019 in Portland, OR

Liquefaction Susceptibility (DOGAMI 2012) Low Moderate High

≻The objectives were to:

- Examine MID performance at the field scale
- Examine MID performance in silty soils

Microbially Induced Desaturation for Liquefaction Mitigation

- Potential non-invasive treatment for fine-grained liquefiable soils
- Treatment solution stimulates native denitrifying microbes
- Denitrification reaction yields N₂ and CO₂ gas

SEM image of gas bubble remnant (O'Donnell 2015)

Soil Desaturation for Liquefaction Mitigation

Studies of sands & sands with non-plastic fines:

- Δu generation inhibited by reduced S_r
- Cyclic resistance ratio increases as S_r decreases

O'Donnell et al. (2017)

O'Donnell (2016), data from Ottawa Sand

Study Approach

Treat a fine-grained soil site with MID

- Monitor treatment area to evaluate changes in S_r
 - $S_r > 99.5\%$, $V_p \approx 1500$ m/s
 - $S_r < 98.5\%$, $V_p \approx 400$ m/s

> Compare $\Delta u - \gamma$ response of untreated soil to MID treated soil

Expect Δu to be notably reduced as S_r decreases below 99.5%

RAPID Project

RAPID/Collaborative Research: Liquefaction Mitigation of Silts using MIDP and Field Testing with NHERI UTexas Large Mobile Shakers

NHERI@UTexas was in the Portland area for an ongoing NSF project

NSF RAPID grant allowed us to leverage NHERI@UTexas resources without expensive transportation costs

Collaborative Project

NHERI@UTexas: Field shaking with T-Rex and Thumper & instrumentation

- Center for Bio-mediated & Bio-inspired Geotechnics and Arizona State University: MID treatment design, implementation & instrumentation
- Condon Johnson & Associates: MID treatment design, equipment & logistics
- ConTec: SCPT site investigation and post-MID treatment evaluation

➢Portland Bureau of Transportation: Research site

Treatment Solution Application

- Treatment solution fed through a central injection well
- Four extraction wells provided water for treatment solution
- Treatment solution injected over 4.5 weeks

Sunderland mixing tote and injection tank

Sunderland injection well

TEROS sensor data transmitter

INJ

Test area setup

3.5 m

Sunderland

Crosshole sensor array

9

Sr Monitoring via Pressure Wave Velocity

- Direct push crosshole for pre-treatment V_p profile
- \succ Crosshole array for regular V_p measurements
- \succ SCPT-measured V_p profiles before and after treatment

V_p Profiles

Pre-treatment and 2 months after treatment

V_p Crosshole Measurements at Sunderland

Regular V_p measurements indicate S_r< 98.5% over 3 years after treatment</p>

<u>Δu - γ from T-Rex Shaking</u>

➤ T-Rex shaking at 2.55 m depth does not indicate that Δu is notably reduced by MID in these soils at these cyclic shear strains

Pore pressure vs. cyclic shear strain

- Cyclic shear strains imparted by T-Rex remain < 0.3% for instrumented depts</p>
- RCTS tests indicate larger cyclic shear strains will generate larger Δu

Pore pressure vs. cyclic shear strain

> Larger cyclic shear strains supported by regional fine-grained soil data

Preciado et al. 2022 & Khosravifar et al. 2022

Enhanced mobile shaker truck shaking

Potential to enhance cyclic shear strains imparted at depths of interest with an embedded auger

Enhanced mobile shaker truck shaking

Preliminary testing performed by NHERI@Utexas and FLAC modeling

Conclusions

- Microbially Induced Desaturation for fine-grained liquefiable soil mitigation investigated through a collaborative project with PSU, NHERI@UTexas, ASU CBBG and industry partners
- Targeted soils were successfully desaturated
 - V_p measurements indicate desaturation throughout the treated soil
 - V_p reductions sustained for >3 years at the Sunderland site
- Δu vs. γ from mobile shaker trucks do not show a notable change in Δu between untreated and treated soils
 - γ does not appear to be sufficiently large at depths of interest
 - Potential to enhance γ through an imbedded auger

Acknowledgements

Research Team:

- Dr. Arash Khosravifar, PSU
- Dr. Leon van Paassen
- Dr. Ed Kavazanjian, ASU
- Dr. Ken Stokoe, UTexas
- Dr. Farnyuh Menq
- Yumei Wang, PSU Graduate Researchers:
- Melissa Preciado (Masters, PSU)
- Kayla Sorenson (PhD Student, PSU)
- Elizabeth Stallings Young (PhD, ASU)
- Benchen Zhang (PhD, UT Austin)

Additional Support:

- Condon Johnson & Associates, Inc.
- ConeTech
- Geosyntec Consultants •
- Oregon Department of Geology and Mineral Industries (DOGAMI)
- City of Portland
- **Portland Metro**

