

Liquefaction Mitigation in Silts using Microbially Induced Desaturation

Arash Khosravifar and Diane Moug Department of Civil and Environmental Engineering Portland State University

Research Team

Dr. Arash Khosravifar, Assistant Professor

Dr. Ed Kavazanjian, Professor

Dr. Ken Stokoe, Professor

Yumei Wang, Resilience Engineer, DOGAMI (Advisor)

Dr. Diane Moug, Assistant Professor

Dr. Leon van Paassen, Associate Professor

Research Team

Graduate Students:

- Melissa Preciado (Masters Student, PSU)
- Kayla Sorenson (incoming Masters Student, PSU)
- Elizabeth Stallings Young (PhD Candidate, ASU)
- Benchen Zhang (PhD Candidate, UT Austin)

Partners

Industry / State Agencies:

- Condon-Johnson & Associates
- ConeTec
- Portland Bureau of Transportation
- Portland General Electric (PGE)
- Portland Water Bureau

Project Overview / Description

- Field trial of Microbial Induced Desaturation (MID) at Two (2) Sites in Portland, OR
- Nutrients (treatment substrates) are injected to the ground from a central well and extracted from perimeter wells
- Denitrification results in nitrogen and CO2 gas which desaturates the soil
- <u>Unsaturated soil is not liquefiable</u>)

SEM image of gas bubble remnant (O'Donnell 2015)

Project Scope / Timeline

- Field shaking with T-Rex at untreated site(July 2019)
- Apply ground treatment for 1 month (August 2019)
- Field shaking with T-Rex at treated site (September 2019)
- Long-term monitoring of treatment using crosshole p-wave velocities (next 3 to 5 years)

Seismicity (Portland, Oregon)

- Cascadia Subduction Zone
 - Magnitude 9, 100 km source-to-site-distance
- Shallow Crustal Faults (Portland Hills Fault)
 - Magnitude 6.8, <10 km
- PGA_M = 0.43 g for
 liquefaction analysis
 based on ASCE 7

Source: DOGAMI

Liquefaction Hazard in Portland

• Two sites selected for this study

Harborton site location

- Located in the area of Oregon's Critical Energy Infrastructure (CEI) hub
- ~90% of Oregon's fuel is handled through CEI (Oregon Solution, CUPA)

Harborton: subsurface conditions

Dredged river fill (< 100 years) over young, loose alluvial river deposits
 Water level: about 7.5 feet bgs

East extraction 12.5' to 14'

South extraction 12.5' to 14'

Sunderland: site location

Sunderland site (managed by Portland Bureau of Transportation, PBOT) is close to Portland International Airport

Sunderland: subsurface conditions

Columbia river floodplain deposits of interbedded silts and clays
 Water level: about 3.5 feet bgs

South extraction 16.5' to 18'

Injection 6.5' to 8'

Ground Treatment Method

- Microbial Induced Desaturation (MID)
- Desaturation \rightarrow little pp during cyclic loading \rightarrow mitigate effective stress loss
- Suitable for fine-grain soils (e.g. low-plasticity silts)
- Suitable for existing structures

Ground Treatment Method

- Nutrients are calcium nitrate (fertilizer) and calcium acetate (food grade), byproducts (nitrogen gas and carbon dioxide) are environmentally benign
- Small amount of nutrients are required for desaturation
 - ✓ 10 grams of CA and 10 grams of CN per liter of water

Ground Treatment Method

- Previous tests
 - Lab scale tests and centrifuge tests showed effectiveness
 - Field experience in Japan showed that the effect lasts for decades

Day 7

Day 17

Field tests are ongoing (Toronto ON, Richmond BC, and Portland)

> Pilot site Toronto Courtesy of Leon van Paassen

Sunderland: instrumentation & data collection

TREX sensor array:

- Measure V_p and V_s with crosshole and downhole seismic tests
- Measure cyclic-induced excess pore pressure generation before and after treatment
- CTD-divers:
 - Record volumes of injected and extracted water (CTD-divers)
 - Measure salinity (via Electrical Conductivity) of injected and extracted water (CTD-divers)
- TEROS-12 in-situ sensors:
 - Measure salinity (via EC) and temperature of groundwater in the monitoring well

Test area setup

Sunderland

TEROS sensor data transmitter

INJ

Test area setup

3.5 m

Sunderland

Crosshole sensor array

18

Test area setupHarborton (PGE)

Test area setupHarborton (PGE)

CALCIUM

Extraction tank (1000 gal)

- TEROS sensor data transmitter

EXT

INJ

Mixing tote (275 gal)

Volume of injected treatment

Injection flow rates

Injection Flow Rate

Salinity vs. time (CTD divers)

Submerged in injection and extraction tanks

Portland State

Salinity vs. time (TEROS-12 sensors)

TREX sensor array

P-wave and S-wave velocity crosshole measurements

TREX sensor array preliminary pre-treatment results

Portland State

Summary of results (so far)

- > Targeted soil stratigraphy is being treated with MID
 - Salinity sensors show injected solution through soil
 - V_p measurements indicate desaturation through the treated layers
- Some preferential paths between injection and extraction wells
- TREX testing prior to treatment provides a baseline of seismic-induced excess pore pressure generation

What's next?

- Post-treatment round of TREX testing will quantify reduction in seismicinduced excess pore pressure generation
- Cyclic lab testing
 - Characterize excess pore pressure generation vs. shear strain curve to strains larger than those induced during TREX testing
 - Further characterize cyclic behavior of Portland-area soils
- Long-term monitoring at Sunderland
 - V_p/V_s cross hole seismic measurements
 - Effectiveness of treatment over time
- > CPT profile in treated area

Acknowledgements

Oregon Department of Geology and Mineral Industries

- City of Portland
- Bureau of Development Services (Ericka Koss)
- Water Bureau (Director Michael Stuhr, Dan Hogan)
- Bureau of Transportation (Cora Crary, David McEldowney)

Geosyntec Seosyntec Consultants (Brian Martinez, **Cindy Bartlett**)

Metro > Portland Metro (Sasha Pollack, Dan Moeller)

Acknowledgements

Research efforts made possible by:

CMMI-1935670

Thank you and we are happy to answer questions!