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Distributed Acoustic Sensing (DAS) — What is it?

E Sensing axial strain (¢,) with laser interferometry (light phase change)
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Where A is the optical wavelength of the laser, i is the group refractive index of
the fiber, and § is the photoelastic scaling factor for axial strain in the fiber
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Why DAS?

Ability to sense seismic wavefields over
large spatial scales (e.g., kilometers)
while still maintaining high spatial
resolution (e.g., 1-m channel separation)
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Multi-Directional Shaking with DAS at Hornsby Bend
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3D shaking capability
allows for controllable
wavefield polarizations
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wantassel, J. Cox, B. Hubbard, P. Yust, M. Meng, F. Auther: Vantassel, Joseph
Publication Date: 2/5/2022

Keywords: distributed acoustic sensing, surface waves, near surface, site characterization, multichannel analysis of surface waves,
MASYW, geophones, linear array, fiber-optic sensing, subsurface imaging
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Experimental DAS Reception Patterns

MASW, Refraction, FWI
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MASW: Geophones vs. DAS - waveforms
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MASW: Geophones vs. DAS - waveforms

Ground strain {ue)

— [AS - Nandee cable

45 m from source

—_— [AS - AFL cable

55 m from source

— Geophone - spatial difference

65 m from source

8 a 8
] . ]
:NW FAVAVaVaN
_ ] —4 ]

_E' [ T _E [ T _E' | I
1 75 m from source a 85 m from source 1 95 m from source
2 2 2

-2 ] -2 -2 ]

-4 T T -4 T T -4 T T
2 105 m from source 1 115 m from source 1 125 m from source
0 wf ’ M 01

_2 1 I _1 1 I _1 I 1

2.0 2.1 2.2 2.0 2.1 2.2 2.0 2.1 2.2

Time into vibroseis sweep {s)

“DAS measures ground deformation quantitatively with both
amplitude and phase that agree with measurements made by
Hubbard et al. (2022)

geophones.”
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Importance of Wavelength & Loading Direction when
Comparing DAS vs. Geophone Waveforms

Response due to wavelength Response due to loading direction
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 DAS spatial transfer function due to gauge length can be
described as:

=== Point strain === Distributed strain ==== Ratio of distributed to point measurement

Figure 2. Radial reception patterns for pointwise strain and ideal distributed sensor-measured strain
. for wavelength to gauge length ratios (1/¢) of 1, 2, and 5 for Rayleigh, P, Love, and SH waves. The
(G(k ) — T l H (E) — sm(nkag) patterns are plotted such that the maximum pointwise strain value is 1. In addition, the ratios of
a g g 1wk ad theoretical distributed strains and pointwise strains are shown as a function of angle in the horizontal
plane (8), which approaches unity for all wave types and angles as A/ g increases.
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MASW: Geophones vs. DAS — dispersion data
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MASW: Geophones vs. DAS — dispersion data
Importance of Gauge Length and Wavelength
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Fig. 6. Comparison of surface wave dispersion images from tln‘eelin—line T-Rex chirps *acked in the time domain at thelsource location of —5 m, IIS derived from the

We show evidence that short wavelength DAS dispersion
measurements are limited near and below the acquisition
gauge length. These observations make gauge length selection
an important factor to consider in future near-surface studies
using DAS. Vantassel et al. (2022)
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MASW: Geophones vs.

“The experimental dispersion data (mean +/- one standard
deviation range) recovered from the geophone and DAS
systems show excellent agreement for all three recovered
Rayleigh modes.”

“When appropriate considerations are made to ensure proper
cable selection, good cable-soil coupling, and sufficiently short
gauge lengths, DAS can be an effective alternative to
geophones for the purpose of acquiring dynamic signals for the
intent of extracting high-resolution, multi-mode surface wave
dispersion using the MASW technique.”

Vantassel et al. (2022)

DAS — dispersion data
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Fig. 10. Comparison between the geophone-derived and DAS-derived (NanZee
and AFL) experimental dispersion data at the Hornsby Bend site. The vertical
range at each frequency represent the mean +/— one standard deviation of the
experimental dispersion data for the fundamental, first-higher, and second-
higher Rayleigh modes (RO, R1, and R2, respectively).
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MASW: 1D Vs Inversions from Mulit-mode
DAS Dispersion Data
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DAS Pseudo-2D MASW at Hornsby Bend

| * Shot Locations = Fiber Optic Cable Sl Eelcatians

« 200-m long DAS array consisting of 196 channels
— 1.02-m channel spacing, 2.04-m gauge length
« 32 shot locations using Thumper every 8m from -24m to 224m
— Vertical sweep from 5 Hz to 200 Hz linearly with 0.5-s cosine taper
« 9 CPT soundings taken every 25m
 Two boreholes, B1 and B2, were drilled at 12.5m and 137.5m
— Downhole testing performed in B1
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DAS Allows for Flexible Sub-Array Geometry

N\ QJ i e 4 -
-~ | * Shot Locations mmFiber Optic Cable 24-Ch. Sub-Arrays

e 47 12-channel sub-arrays
e 44 24-channel sub-arrays (shown above)

e 38 48-channel sub-arrays
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Dispersion Data: Impact of Sub-Array Length

» Consistent A, avg
—6.4mto6.6m

* Varying Ayax avg
— 12-channels: 20 m
— 24-channels: 28 m
— 48-channels: 39 m

. s_horter arrays
slightly more

variable within
shared range.
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Pseudo-2D Vs Cross Sections: Impact of Sub-Array Length
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DAS 2D Imaging via FWI at Hornsby Bend

| * Shot Locations = Fiber Optic Cable Sl Eelcatians

« 200-m long DAS array consisting of 196 channels
— 1.02-m channel spacing, 2.04-m gauge length
« 32 shot locations using Thumper every 8m from -24m to 224m
— Vertical sweep from 5 Hz to 200 Hz linearly with 0.5-s cosine taper
« 9 CPT soundings taken every 25m
 Two boreholes, B1 and B2, were drilled at 12.5m and 137.5m
— Downhole testing performed in B1
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DAS FWI Using Salvus Software

 The Salvus software package by Mondaic AG was used to process
the raw data and perform the inversions

— The spectral-element method is used to perform simulations
(Afanasiev et al. 2019)

— The elastic wave equation is derived in terms of displacement (u)
p(x)ofu(x,t) — V- (C(x): s(u)(x, t)) = f(x,t) © Mondaic AG

Misfit also in terms of u: y(u) Derived field: g = g(u) = Du = ele(u)e

— Adjoint strain sources are implemented as moment tensor sources rather than
the vector sources used for velocity (geophone) data

(01 2 60) = (2026w ) = ( (%) ee”, o)

Vector Source Tensor Source
Tensor Source
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Stage 1 (10 to 15 Hz) - Shot 1 - Observed Data
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« The observed waveforms are correlated with the Thumper’s ground force output
* A point-to-line source conversion is applied (Forbriger et al. 2014)

* Only channels 20 m to 120 m away from each shot location are inverted
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Stage 1 (10 to 15 Hz) - Shot 16 - Observed Data
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« The observed waveforms are correlated with the Thumper’s ground force output
* A point-to-line source conversion is applied (Forbriger et al. 2014)
* Only channels 20 m to 120 m away from each shot location are inverted
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Stage 1 (10 to 15 Hz) - Shot 32 - Observed Data
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« The observed waveforms are correlated with the Thumper’s ground force output
* A point-to-line source conversion is applied (Forbriger et al. 2014)
* Only channels 20 m to 120 m away from each shot location are inverted
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Investigated 4 Different Starting Models for FWI
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Stage 1 (10 to 15 Hz) — 1D MASW Model Update
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Stage 4 (10 to 30 Hz) Final Models:
Observed vs. Simulated Waveforms
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Comparison of Final 2D Vs Images with
Invasive Testing Data
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* Despite very similar
waveform misfits, the
final 2D Vs images are
quite different,
highlighting non-unique
nature of FWI
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DAS for 3D Imaging at the Newberry, FL Site

https://youtu.be/BrEPCvoeiikE
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https://youtu.be/BrEPCvoeiiE

Conclusions

 The 1D nature of DAS (i.e., axial strain) makes its reception to seismic waves complicated.

 The theory of DAS reception can be used along with controllable source polarizations to
create optimal configurations for the application of interest.

« NHERI@UTexas’s seismic shakers are capable of generating vertical and 2-component
horizontal shaking that can be used for a variety of DAS imaging applications.

* More research needs to be done to show how active-source surface seismic experiments
can leverage the directionality of both sources and sensors to improve seismic imaging.

B.R. Cox, PhD, PE DAS and NHERI@UTexas Mobile Shakers



We Look Forward to Supporting Your DAS Research
with our NHERI@UTexas Shakers and DAS U

Questions?
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