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1. Outline

. Present a brief background on field and laboratory
seismic measurements.

. Discuss a new framework for predicting settlements
using dynamic soil properties.

. Present a new approach to characterizing liquefiable
solls in the field.

. Show advances in dynamic torsional resonant column
and cyclic torsional shear testing in the laboratory to
evaluate parameters that effect Vg and G.

. “Mention” two additional important areas of research.
. Conclusions



1. Background - Shallow Foundations on Granular Solil

Main Design Criteria
|

v v

1. Bearing Capacity: Q q;,,=Q,,1/F.S.

2. Permissible Settlement: S < S,
(Typically Controls)

Qdesign

> Load, Q

Settlement, S

Approach Traditional Approach

° Limit equilibrium analysis * Based on SPT and CPT Correlations

. Requires strength parameters ° SO“ Sampling iS hard andlor expenSive
(¢'and ¢’ in granular soil so rarely performed

e Stresses and strains are undefined

New Framework

* Deformation-based analysis

* Stresses and strains are calculated
* Key factor is field Vg measurements




2. New Framework for Settlement Predictions under Working

Loads Using Dynamic Soil Properties

Framework:

e Requires Stiffness Parameters
* G Changingwithyando

* v Changing with y (but presently

assumed v = constant)

1. Loading Applied
1 Applied Load, P
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2. Load - Settlement Curve
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Stress - and Strain - Dependent
Moduli, Load #1:
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Background Information on Dynamic Soil Properties

G/ G,.x - LOg 7 Relationships

y£ = elastic threshold

v = cyclic threshold

ytpp = pore-pressure

threshold
Highly .
Nonlinear , Moderately ¢ L - Yr = reference strain
Elastic Nonlinear | Range (where G/G,,,, = 0.5)

Range

0.0001 0.001 0.01 0.1 1
Shear Strain, v (%)

Laboratory tests methods (torsional resonant column) made it possible to
measure strains over a wide strain range beginning in the linear range and
extending somewhat into the highly nonlinear range (y ~ 0.2 to 0.3%).



Background Information on Dynamic Properties of Granular Soils

Linear (Small-Strain) Range Linear, Nonlinear-Elastic, and Moderately Nonlinear Ranges
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3. Modeling with Dynamically Measured Soil Properties (MoDaMP)

Step # 1 - Field Seismic Testing for V.- _Step #2 - Field log G,,,—log Y
Depth Profile A Relationships
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Step # 3 - Dynamic Laboratory Tests for

Step # 4 - Combine Field Seismic and Dynamic
G/G,,., — log 7 Relationships

Laboratory Tests for G — log vy Relationships

«_—_——_

increasing ¢
increasing o',
1.0 G
G/Gmax
0.5 — --— @ —-—--- -
Combine
For each layer For each layer
0
0 [ [ [ [ 1'0-3 1|0-1 1|o-1 1|0-0
103 101 10! 10°

log v log y



PLAXIS Finite Element Model with MoDaMP

Layerl Layer 2
Gnax_1atm 1827 ksf 1980 ksf
Vo 0.3 0.3
a 1.00 1.00
Y (%) * Equation 6.3 *Equation 6.3

* Equation 6.3: 7, = 0.0200 log (?) +0.0277

15 ft (4.6 m)

946, 15-node triangular elements.
15 x 15 ft (4.6 x 4.6 m) dimensions.
Footings are modeled as flexible.
Axisymmetric model.

The lower boundary is fixed in both
directions.

The vertical boundaries are fixed
only in the horizontal direction.




Modeling with Dynamically Measured Soil
Properties (MoDaMP)

TP A
G, = Secant Shear Modulus G, = Tangent Shear Modulus

Convert

=

G to G,

v

Using G values and Poisson’s ratio, the elastic stiffness matrix is created

(Ao ] 1y v . 0 0 0 1] dex ]
doyy , 1—v v 0 0 0 deyy
do,, _ 2G, 1% v 1—v 0 0 0 de,
doy, [ (1-2v)| O 0 0 (1-2v)/2 0 0 2dey,
do,, 0 8 0 0 (1-2v)/2 0 2de,,
_dcxy_ 0 0 0 0 (1 - 21/)/2_ _stxy_

v



Verification of MoDaMP in the Elastic Range

MoDaMP was verified by predicting
settlements of a rigid, circular
footing on an elastic half-space.

1. From elastic theory
(Richart et al., 1970):

S = the settlement,
P =the applied load and
B =is the footing diameter

2. New framework implemented
in PLAXIS:

Using MoDaMP with

¥, =1000%,
a =1.0 and
TlG =0.0

Applied Load, P (kN)
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4. Prediction Study:
Load-Settlement Tests at the NGES* Test Site

Developed at Texas A&M University

ake Bryan £ n )
O b Yy o [17]
o My,
g
(exes0sh o oot¥F MRy 3
fate High) z (68)
ad
> 2
gandt & (@)
& q T Sam Rayburmy;
Neal Park [+ School Park
Bryan ’e)
@ v
G (68) %,
) ; = %,
(o) Main Campus z Tiey )
Texas A&M University i 0 =
— ~ Riverside Campus Texas A&Min % o Veterans Park and
@) Athletic Complex
10 miles

N
=

W \ 2 2

- Texas A&M Institute

= for Preclinical Studies (o5
Institute for Obesity (68)

o S
Research and... > v
- (s)
ol - &
- §
262 oF &
s
2 S
Edelweiss Park &
x + 4
; : 3
s P Lick Creek Pa
S
3

*NGES = National Geotechnical Experimentation Site



Characterization of the NGES Test Site
Field Penetration Testing and Field Seismic Testing

Traditional Field Testing

SASW (Park et al., 2009)
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Characterization of the NGES Test Site
V¢ — Depth Profile from Field Seismic Testing
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Normalzied Shear Modulus, G/G,,,,

Characterization of the NGES Test Site

G/G

max

Two, hand-carved, intact specimens

o4 =0.41 atm (6 psi)
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Load-Settlement Tests at the NGES Test Site

(c) Staged, Load-Settlement
Tests (from Park et al., 2009)
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Load-Settlement Predictions with MoDaMP

 The G/G,,, - log 7y curves from RCTS tests are primarily developed over small-
to-moderate values of v, typically less than 0.2 %.

* A two-step procedure is used to modify G/G,_ ., - log 7 curves at larger strains:

Step 1: Adjusting the “a” coefficient at larger strains based on comparing the
T-y relationships from the G/G_.. - log v curves and triaxial tests.

G/Gmax
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1 00
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Confining Pressure
7 Unmodified = 138 KPa
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0.0001 0.001 0.01 0.1 1 10 Shear Strain (%)

Shear Strain (%)



Load-Settlement Predictions with MoDaMP

After Step 1:

* The predicted settlements were higher than the measured settlements.

Step 2: Adjusting the larger-strain

“un
d

to account for the higher horizontal stresses
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Example of How MoDaMP Works

Load, P, (kN)
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Settlement (mm)

10 Vertical-Strain Profiles L
Were Calculated
E
15 =
o
| Prediction with g
PLAXIS and
20 — MoDaMP2 2
(2 modification)
25 | Points A, B and C are selected load

Load-Settlement Predictions with MoDaMP-2

1. Comparison of Predicted and 2. Predicted Vertical Strains Beneath
Measured Settlements the Centerline of Footing
Applied Pressure (kPa) Vertical Strain (g)
0 100 200 300 400 0 0002  -0004  -0.006  -0.008  -0.01

0 | | 0 —
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Levels on the load-settlement curve
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Load-Settlement Predictions with MoDaMP

Comparison of Predicted Settlements with
CPT- and SPT-based Methods

Applied Pressure (kPa)
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Conclusions: Framework for Predicting Settlements

1. Field seismic measurements are used to characterize the
granular soil in terms of the small-strain shear modulus
(G profile.

2. G, is combined with nonlinear normalized shear modulus-
shear strain (G/G,,,,-log v) relationships that are stress
dependent and material dependent.

max)

3. The G/G,,,,-log v relationships are modified following a two-
step process to extend them to strains in the range of
several percent.

4. Nonlinearity in the load-settlement curves which was
measured in the field tests was captured in the predicted
settlements.
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Soil Conditions at the Texas A&M, NGES* Test Site

Soil Profile SPT Blow Count CPT Tip Resistance

Removed Overburden
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* NGES = National Geotechnical Experimentation Site



